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Abstract
This paper reports an investigation of features relevant for clas-
sifying two speaking styles, namely, conversational speaking
style and clear (e.g. hyper-articulated) speaking style. Spec-
tral and prosodic features were automatically extracted from
speech and classified using decision tree classifiers and multi-
layer perceptrons to achieve accuracies of about 71% and 77%
respectively. More interestingly, we found that out of the 56
features only about 9 features are needed to capture the most
predictive power. While perceptual studies have shown that
spectral cues are more useful than prosodic features for intel-
ligibility [1], here we find prosodic features are more important
for classification.

Index Terms: binary classification, acoustic features, decision
tree classifier, multilayer perceptron,

1. Introduction
A speech recognition system is sensitive to changes in speaking
style. As the users changes their speaking style to hyperarticu-
lated speech, the recognition error may increase [2]. This un-
usual speaking style, collectively referred to as Clear speech (or
CLR) here, can also occur in a variety of situations such as when
speakers are talking to a hard-of-hearing listeners, or communi-
cating in a noisy environment [3, 4]. The intelligibility of CLR is
known to be higher than that of conversational (or CNV) speech,
spoken as in daily communication with a colleague [3, 5]. The
acoustic characteristics that are known to be significantly dif-
ferent between CLR and CNV speech include longer phoneme
duration (or slowed speaking rates), longer and more frequent
pauses, larger vowel spaces for the lax vowels, greater F0 fluctu-
ations, often released stop bursts, and increased spectral energy
in the 1000–3000 Hz range [6, 5].

If a classification stage prior to a speech recognition sys-
tem can determine which speaking style a specific user is talk-
ing in, it is possible to switch to a different speech recognition
system that is adapted to that speaking style. Similar to the neu-
tral/Lombard effect classification for the two-stage recognition
system [7], we propose to build the speech-style classifier using
a subset of acoustic features from CLR and CNV speech in this
study. The accurate classification of speaking style can not only
help improve speech recognition but also help tailor strategies
in a spoken dialog system. As a second goal, we will determine
which features are relevant to classify the two speaking styles,
CLR and CNV speech. Whether the speaking style is classified
as CLR or CNV speech has, until now, been based on perception,
examining if the average intelligibility of one type of speaking
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style is higher than the other [1]. The proposed classification al-
gorithm may be useful to filter out non-significant CLR speech
(which does not represent the characteristics of CLR speech)
from a study, independent of human perception.

Previously, researchers investigated the relationship be-
tween acoustic features and speech intelligibility [8], speaker
variability in different speaking styles [9], and the benefit of
CLR speech for different populations [10]. Researchers exam-
ined the primary factor in determining the improved intelligibil-
ity of CLR speech by finding the correlation between acoustic-
phonetic characteristics and speech intelligibility [8]. From
a study by Hazan and Markham [8], a measure of long-term
average spectrum was obtained over the following frequency
band regions: 500–3000 Hz, 1000–2000 Hz, 500–2000 Hz, and
1000–3000 Hz. The only significant correlation with word in-
telligibility was found for the total energy in the 1000–3000 Hz
region (male speakers N = 15, adult listeners N = 15,
r = 0.803, p < 0.001). The word duration was also found to
be significantly correlated with word intelligibility (male speak-
ers N = 15, r = 0.672, p = 0.006). Even though these results
tell us which features are expected to be relevant to a CLR/CNV

classification, the correlation method examined a single feature
instead of a combination of acoustic features.

Kain et al. [1] investigated which features contribute to
the improved intelligibility of CLR speech by modifying an as-
pect of CNV speech to adopt CLR speech features. The results
showed that the spectrum and duration information contributed
to the improved intelligibility of CLR speech, while F0 and long-
term energy fluctuation did not. The acoustic features that con-
tribute to the improved intelligibility of CLR speech may, how-
ever, be different from acoustic features that are relevant to clas-
sify the two speaking styles.

In this study, we examine features that are shown to be dif-
ferent between CLR and CNV speech in terms of both prosodic
and spectral features [6, 5]. Features are selected based on the
information gain and pruned decision trees. We describe the
data structure and data analysis method in Section 2, experi-
ment using the decision tree classifier in Section 3, and experi-
ment using the multilayer perceptron in Section 4.

2. Data Description
2.1. Data Structure

We used the OGI CLR-speech corpus [1] from three speakers
(1 male and 2 females), which consists of 70 syntactically and
semantically correct sentences [11]. They are phonetically bal-
anced sentences, containing 7–10 words per utterance. Acoustic
features in 210 utterances (70 utterances × 3 speakers) in each
speaking style were analyzed, resulting in 420 feature vectors
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in total.

The input (x1, . . . xn) is an N -dimensional acoustic fea-
ture vector (N = 56). The output is the class C = 1 for
speaker’s intention of producing CLR speech, and C = −1 for
the speaker’s intention of producing CNV speech. In the fol-
lowing section, the method to extract acoustic features and the
summary of 56 attributes are described.

2.2. Data Analysis

Duration: All sentences were annotated and segmented auto-
matically using forced alignment [12]. Total vowel durations,
durations of the last vowel in the sentence, total consonant
durations, the longest vowel duration, the longest consonant
duration, mean stop burst durations (/�, �, �, �, �, �/), and to-
tal pause durations were measured per sentence and divided
by the sentence duration. Burst count and pause count are
the number of occurrences of bursts and pauses per sentence.
Consonant-vowel duration (CVD) ratios were computed by
dividing the duration of the consonants /�, �, �, �, �, �, �, �, 	,

, �, �/ by the following vowel duration and averaging over
the sentence [13].
The ten features we selected are: (1) vowel duration, (2) final
vowel duration, (3) consonant duration, (4) maximum vowel
duration, (5) maximum consonant duration, (6) CVD ratio,
(7) stop burst duration, (8) stop burst count, (9) pause dura-
tion, and (10) pause count.

Fundamental frequency (F0): The fundamental frequency
(F0) was extracted by taking the inverse of the distance be-
tween two consecutive glottal-closure instances (GCI) using
the software Praat [14]. The F0 values (in Bark) were av-
eraged over all vowel regions. The range was obtained by
taking the difference between maximum and minimum F0
values over the entire sentence.
The two features we selected are: (11) vowel F0 mean, and
(12) vowel F0 range.

Formant frequency: First and second formant trajectories and
formant bandwidths were extracted using the Snack Sound
Toolkit (http://www.speech.kth.se/snack) in the
vowel regions. The formant values were taken from the mid-
dle of the vowel. Formant information was measured for the
following 37 features: the mean F1 and mean F2 values of
seven vowels /
�/, /�/, /�/, /�/, /�/, /�/, and /�/ and correspond-
ing bandwidths (BW), and the mean distance between F1 and
F2 frequencies of these seven vowels. The mean distance be-
tween F1 of /
�/ and F1 of /�/ (for the F1 range), and the mean
distance between F2 of /�/ and F1 of /
�/ (for the F2 range)
were included in order to estimate the vowel space. Formant
frequencies were converted to the Bark scale.
The thirty seven features we selected are: (13) F1 range, (14)
F2 range, (15) F1–F2 distance of vowel /
�/, (16) F1–F2 dis-
tance of vowel /�/, (17) F1–F2 distance of vowel /�/, (18)
F1–F2 distance of vowel /�/, (19) F1–F2 distance of vowel
/�/, (20) F1–F2 distance of vowel /�/, (21) F1–F2 distance
of vowel /�/, (22) mean F1 of /
�/, (23) mean F2 of /
�/, (24)
mean F1 of /�/, (25) mean F2 of /�/, (26) mean F1 of /�/, (27)
mean F2 of /�/, (28) mean F1 of /�/, (29) mean F2 of /�/, (30)
mean F1 of /�/, (31) mean F2 of /�/, (32) mean F1 of /�/, (33)
mean F2 of /�/, (34) mean F1 of /�/, (35) mean F2 of /�/, (36)
mean F1 BW of /
�/, (37) mean F2 BW of /
�/, (38) mean F1
BW of /�/, (39) mean F2 BW of /�/, (40) mean F1 BW of /�/,
(41) mean F2 BW of /�/, (42) mean F1 BW of /�/, (43) mean
F2 BW of /�/, (44) mean F1 BW of /�/, (45) mean F2 BW of
/�/. (46) mean F1 BW of /�/, (47) mean F2 BW of /�/, (48)
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Figure 1: Histogram of the pause count

mean F1 BW of /�/, and (49) mean F2 BW of /�/.
Energy: We examined the root-mean square (RMS) energy

for vowels and consonants separately on energy-normalized
sentences. The RMS energy range was computed by taking
the difference between maximum and minimum RMS energy
values. The (CV) energy ratios were calculated by dividing
the RMS energy of the consonant /�, �, �, �, �, �, �, �, 	, 
, �,
�/ by the RMS energy of the following vowel and converted
to the dB scale [13].
The three features we selected are: (50) vowel RMS energy
range, (51) consonant RMS energy range, and (52) CV en-
ergy ratio.

Spectrum: The long-term average spectrum (LTAS) of an
energy-normalized sentence was calculated in four frequency
bands (500–3000 Hz; 1000–2000 Hz; 500–2000 Hz; 1000–
3000 Hz), measured in dB [8].
The four features we selected are: (53) mean spectrum be-
tween 500 and 3000 Hz, (54) mean spectrum between 1000
and 2000 Hz, (55) mean spectrum between 500 and 2000 Hz,
(56) mean spectrum between 1000 and 3000 Hz.

2.3. Results of the Data Analysis

We performed a two-tailed, paired t-test (p < 0.05) for each
feature to determine a statistical difference between CLR and
CNV speech for that feature. The p values and significance of
selected features are shown in Table 1. Eighteen attributes out
of 56 (3 prosodic features: F0 range, vowel RMS energy, CV ra-
tio, and 15 spectral features) did not have significant differences
in their means between CLR and CNV speech. In particular, the
LTAS in all four bands (53)–(56) was not shown to be signifi-
cantly different, unlike a previous study [5]. The reason might
be because of the speakers’ characteristics; it was shown in [9]
that different speakers employ different strategies to produce
CLR speech.

As an example of acoustic features, Figure 1 shows the his-
togram of the pause count (attribute 10) in CLR and CNV speech,
which has the highest information gain (0.2046) among the 56
features. The total number of pauses was increased in CLR

speech from 130 to 352 instances. The number of stop burst
consonants (attribute 8) showed an increase in CLR speech from
957 to 983 instances. As shown in [6], the stop consonants at
the final word position are often released in CLR speech.

The information gain (IG) was calculated in each attribute
by

I(A, Y) = H(A)−H(A|Y) (1)

where H(A) is the entropy of attribute A, and H(A|Y) is the
conditional entropy of attribute A given Y. The information
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Table 1: 10 best attributes in each prosodic and spectral feature group. The total of 20 attributes are shown with the mean values of
CLR and CNV speech, p-values (degree of freedom in parentheses) from a two-tailed, pairedt-test. Information gain (IG) and its rank
are indicated as well as the rank in each prosodic and spectral feature group.

Num. Attribute CNV CLR p value (df ) IG Rank Feat. group w/ rank

10 Pause count 0.6190 1.6762 8.1e-028 (209) ∗ 0.2046 1 Pros.1
9 Pause duration 0.0144 0.0459 1.4e-024 (209) ∗ 0.1833 2 Pros.2

11 Vowel F0 mean 1.7768 1.7515 4.7e-003 (209) ∗ 0.0874 3 Pros.3
32 Vowel F1 mean /�/ 4.5103 4.7738 2.6e-007 (191) ∗ 0.0703 4 Spec.1
21 F1-F2 distance /�/ 3.7442 3.0258 3.3e-019 (122) ∗ 0.0613 5 Spec.2
2 Final vowel duration 0.0717 0.0590 5.0e-028 (209) ∗ 0.0585 6 Pros.4
5 Max consonant duration 0.0774 0.0694 3.2e-009 (209) ∗ 0.0570 7 Pros.5

12 Vowel F0 range 1.3608 1.4360 0.1232 (209) 0.0489 8 Pros.6
46 Vowel F1 BW of /�/ 109.1470 97.8330 6.3e-003 (191) ∗ 0.0390 9 Spec.3
30 Vowel F1 mean of /�/ 5.9077 6.8737 7.8e-014 (104) ∗ 0.0341 10 Spec.4
19 F1–F2 distance /�/ 6.2097 5.4758 1.5e-009 (104) ∗ 0.0311 11 Spec.5
20 F1–F2 distance /�/ 6.7361 6.3660 2.3e-009 (191) ∗ 0.0301 12 Spec.6
52 CV energy ratio -11.8714 -11.7694 0.6495 (209) 0.0273 13 Pros.7
6 CVD ratio 0.7999 0.7208 2.0e-002 (209) ∗ 0.0224 14 Pros.8

51 Consonant RMS energy range 0.1144 0.1083 2.2e-005 (209) ∗ 0.0216 15 Pros.9
50 Vowel RMS energy range 0.0913 0.0916 0.8590 (209) 0.0207 16 Pros.10
24 Vowel F1 mean of /�/ 4.4167 4.5888 0.0033 (131) ∗ 0.0198 17 Spec.7
23 Vowel F2 mean of /��/ 13.9635 14.4636 7.4e-023 (101) ∗ 0.0181 18 Spec.8
25 Vowel F2 mean of /�/ 12.3511 12.7778 3.4e-007 (131) ∗ 0.0178 19 Spec.9
49 Vowel F2 BW of /�/ 188.4554 162.2370 1.0e-003 (122) ∗ 0.0176 20 Spec.10

gain of the 10 best attributes in each prosodic and spectral
group, for a total of 20 attributes, are listed in Table 1.

3. Experiment 1: Decision Tree
Classification

The machine learning algorithm was implemented using the
software Weka (ver. 3.6.0) [15]. The first experiment for fea-
ture selection was carried out using the decision tree algorithm
with pruning. The training and testing was performed with 10-
fold cross-validation, and was repeated 10 times with different
partitions, resulting in 100 tests in total. In the training set, one
fold was used for pruning, and the rests were for growing the
tree. The threshold for the confidence factor was set to 5% for
the tree pruning. The confidence factor indicates the percentage
of values in the training set classified correctly by that path of
the tree [16]. The minimum number of instances per leaf was
set to 2. Five datasets, (1) all 56 attributes and (2) 9 attributes
based on the pruned tree, (3) 10 best attributes based on IG, (4)
10 best attributes based on IG in the prosodic feature group, (5)
10 best attributes based on IG in the spectral feature group were
examined.

The accuracy on each dataset from the decision tree
algorithm are summarized in Table 2. The accuracy did not
change much with and without pruning, but the size of the tree
was reduced. The results from the pruned tree (cfth = 5%)
showed that nine attributes,

(10) Pause count, (9) Pause duration,
(11) Vowel F0 mean, (32) Mean F1 of /�/,
(21) F1–F2 distance of /�/, (2) Final vowel duration,
(5) Max consonant duration, (12) Vowel F0 range,
(46) F1 BW of /�/,

were relevant for classification with 74.17% accuracy, which
was the best case using the decision tree algorithm. While 6 of
the relevant features were prosodic features, 3 spectral features
were included. A previous study [1] showed prosodic features,

including F0, energy, and pausing, had little contribution to the
improved intelligibility of CLR speech. It was unexpected that
the features needed to classify speaking style are different from
the features that are important for speech intelligibility.

4. Experiment 2: Multilayer Perceptron
The second experiment was carried out to determine whether a
multilayer perceptron (MLP) algorithm would work better than
the decision tree algorithm. The MLP is a feedforward artifi-
cial neural network that maps N -dimensional input data to a set
of output classes. Each unit in each layer is represented as a
perceptron,

yi = f(

mX

j=1

wijxj + b0) (2)

where b0 is the bias term. Learning weights wij are determined
through backpropagation during training. The weight update
equation is

wij(t + 1) = wij(t) + ηΔj(t)yi(t)

+ α[wij(t)− wij(t + 1)]. (3)

In this experiment, a sigmoidal function was used for the ac-
tivation function. The learning rate η and momentum α were
0.2 and 0.2, which were determined from preliminary exper-
iments. The training and testing was performed with 10-fold
cross-validation, and 10% of training set was held out for a
cross-validation set. The training was terminated if the vali-
dation set error became worse 20 times in a row or maximum
training time was reached (500 epochs). The entire process was
repeated 10 times with different partitions, resulting in 100 tests
in total. The number of units in the single hidden layer used in
the experiment is listed in Table 2

The results from the MLP are summarized in Table 2 for
each dataset. The best accuracy of 78.74% was obtained using
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Table 2: Classification accuracies in percent (standard deviation in parentheses) of the decision tree algorithm with and without pruning
and the multilayer perceptron algorithm.

Dataset Decision Tree Decision Tree (%) MLP (%) Num. hidden units
without pruning (%) (cfth = 5%)

All 56 attributes 70.83 (6.89) 71.19 (6.53) 77.17 (5.87) 278
9 best attributes 74.24 (7.26) 74.17 (6.85) 76.14 (6.64) 44

10 best attributes 73.31 (7.38) 74.02 (7.04) 78.74 (6.24) 49
10 best in prosodic group 72.52 (6.43) 72.38 (7.04) 72.90 (6.93) 49
10 best in spectrum group 65.57 (6.80) 65.10 (6.80) 66.79 (6.33) 51

the 10 best attributes determined from the IG. MLP classifiers
consistently outperformed decision tree classifiers for all sets
of attributes and the improvement was found to be statistical
significant (a two-tailed, paired t-test, p < 0.05) when all at-
tributes were used.

In the decision tree algorithm, the classification accuracy
did not improve with more than the 9 best attributes. The re-
sults from the MLP also showed the accuracy with the 10 best
attributes (78.74%) was better than the one with all 56 attributes
(77.17%). The difference between the prosodic and spectral
feature group was about 7.28% for the decision tree, and 6.11%
for the MLP, which indicates the importance of prosodic fea-
tures. Twenty-six out of 41 spectral features (63.4%) had a
significant mean difference between CLR and CNV speech, as
opposed to 80.0% of prosodic features. The change in spec-
tral features between the two speaking styles might not be as
dramatic as in prosodic features, even though the spectral fea-
tures are more important for intelligibility [1]. The smaller set
of identified prosodic features could also be incorporated into
parsimonious models to improve speech recognition [17].

In this study, the acoustic features may include incorrect
phoneme duration, F0 values, and formant values, caused by
automatic feature estimation. Even with these errors, the results
in this work showed 78.74% classification accuracy. With all
automatic feature extraction, the classification system could be
implemented in real time.

5. Conclusions
In conclusion, we were able to obtain 78.74% classification ac-
curacy using a subset of acoustic features from CLR and CNV

speech. The number of features required for the classification
was as low as 9 features with 76.14% accuracy. While prosodic
features (i. e. F0, energy contour, and pause) were not impor-
tant for the improved intelligibility of CLR speech [1], they (F0
mean and F0 range) were shown to be relevant for the classifi-
cation task. The results indicate that the features that are impor-
tant for speaking style classification and for intelligibility may
be different.

Differences in speaking styles are not necessarily only in
acoustics, but may also exist in language complexity. Combin-
ing higher-level language information with acoustic informa-
tion may lead to better classification accuracy.
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